Nuclear factor-kappaB activation: a molecular therapeutic target for estrogen receptor-negative and epidermal growth factor receptor family receptor-positive human breast cancer.
نویسندگان
چکیده
Nuclear factor-kappaB (NF-kappaB), a transcription factor with pleotropic effects, is a downstream mediator of growth signaling in estrogen receptor (ER)-negative and erbB family particularly erbB2 (HER-2/neu) receptor-positive cancer. We previously reported activation of NF-kappaB in ER-negative breast cancer cells and breast tumor specimens, but the consequence of inhibiting NF-kappaB activation in this subclass of breast cancer has not been shown. In this study, we investigated the role of NF-kappaB activation by studying the tumorigenic potential of cells expressing genetically manipulated, inducible, dominant-negative inhibitory kappaB kinase (IKK) beta in xenograft tumor model. Conditional inhibition of NF-kappaB activation by the inducible expression of dominant-negative IKKbeta simultaneously blocked cell proliferation, reinstated apoptosis, and dramatically blocked xenograft tumor formation. Secondly, the humanized anti-erbB2 antibody trastuzumab (Herceptin) and the specific IKK inhibitor NF-kappaB essential modifier-binding domain peptide both blocked NF-kappaB activation and cell proliferation and reinstated apoptosis in two ER-negative and erbB2-positive human breast cancer cell lines that are used as representative model systems. Combinations of these two target-specific inhibitors synergistically blocked cell proliferation at concentrations that were singly ineffective. Inhibition of NF-kappaB activation with two other low molecular weight compounds, PS1145 and PS341, which inhibited IKK activity and proteasome-mediated phosphorylated inhibitory kappaB protein degradation, respectively, blocked erbB2-mediated cell growth and reversed antiapoptotic machinery. These results implicate NF-kappaB activation in the tumorigenesis and progression of ER-negative breast cancer. It is postulated that this transcription factor and its activation cascade offer therapeutic targets for erbB2-positive and ER-negative breast cancer.
منابع مشابه
Imaging features of estrogen-negative breast cancers: a correlation study with human epidermal growth factor type II overexpression
Background: Estrogen-negative breast cancers have different clinical course, prognostic features and treatment response in comparison to estrogen receptor-positive (ER-positive) breast cancers. Human epidermal growth factor receptor 2 (HER2) oncoprotein has found to have a pivotal role in natural cell growth and cell division and is suggested to be directly related to tumor invasiveness in brea...
متن کاملEpidermal growth factor-induced nuclear factor kappa B activation: A major pathway of cell-cycle progression in estrogen-receptor negative breast cancer cells.
The epidermal growth factor (EGF) family of receptors (EGFR) is overproduced in estrogen receptor (ER) negative (-) breast cancer cells. An inverse correlation of the level of EGFR and ER is observed between ER- and ER positive (+) breast cancer cells. A comparative study with EGFR-overproducing ER- and low-level producing ER+ breast cancer cells suggests that EGF is a major growth-stimulating ...
متن کاملBioinformatics-Based Prediction of FUT8 as a Therapeutic Target in Estrogen Receptor-Positive Breast Cancer
Abstract Introduction: Estrogen receptor-positive (ER-positive) breast cancer is a subgroup of breast tumors that is more likely to respond to hormone therapy. ER-positive and ER- negative breast cancers tend to show different patterns of metastasis because of different signaling cascade and genes that are activated by estrogen response. Genetic factors can contribute to high rates of metastas...
متن کاملBioinformatics-Based Prediction of FUT8 as a Therapeutic Target in Estrogen Receptor-Positive Breast Cancer
Abstract Introduction: Estrogen receptor-positive (ER-positive) breast cancer is a subgroup of breast tumors that is more likely to respond to hormone therapy. ER-positive and ER- negative breast cancers tend to show different patterns of metastasis because of different signaling cascade and genes that are activated by estrogen response. Genetic factors can contribute to high rates of metastas...
متن کاملMolecular Docking Based on Virtual Screening, Molecular Dynamics and Atoms in Molecules Studies to Identify the Potential Human Epidermal Receptor 2 Intracellular Domain Inhibitors
Human epidermal growth factor receptor 2 (HER2) is a member of the epidermal growth factor receptor family having tyrosine kinase activity. Overexpression of HER2 usually causes malignant transformation of cells and is responsible for the breast cancer. In this work, the virtual screening, molecular docking, quantum mechanics and molecular dynamics methods were employed to study protein–ligand ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular cancer therapeutics
دوره 6 7 شماره
صفحات -
تاریخ انتشار 2007